
P3.8-3) Consider the racing oval shown. A car begins from rest at point A and increases its speed at a rate of $\dot{v} = 0.2t$ m/s², where t is in seconds. Determine (a) the time it takes the car to reach the apex of the curve at point B and (b) the racecar's velocity and total acceleration as it passes point B.

\sim	i	
C	iven	_

Find:

Solution:

Velocity.

Is $\dot{v} = 0.2t$ the tangential acceleration or the normal acceleration?

Tangential Normal

Derive the car velocity as a function of time.

v = _____

Position

Derive the car's distance traveled (*s*-coordinate position) as a function of time.

What is the total distance traveled by the car?

 $S_{total} =$

Calculate the time of the car.

 $t_{total} =$

Acceleration

Calculate the total acceleration of the car as it passes point B.

s = _____

a =